Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3418, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653990

RESUMEN

In single unit-cell FeSe grown on SrTiO3, the superconductivity transition temperature features a significant enhancement. Local phonon modes at the interface associated with electron-phonon coupling may play an important role in the interface-induced enhancement. However, such phonon modes have eluded direct experimental observations. The complicated atomic structure of the interface brings challenges to obtain the accurate structure-phonon relation knowledge. Here, we achieve direct characterizations of atomic structure and phonon modes at the FeSe/SrTiO3 interface with atomically resolved imaging and electron energy loss spectroscopy in an electron microscope. We find several phonon modes highly localized (~1.3 nm) at the unique double layer Ti-O terminated interface, one of which (~ 83 meV) engages in strong interactions with the electrons in FeSe based on ab initio calculations. This finding of the localized interfacial phonon associated with strong electron-phonon coupling provides new insights into understanding the origin of superconductivity enhancement at the FeSe/SrTiO3 interface.

2.
Adv Mater ; 36(19): e2204884, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38374724

RESUMEN

Phonon polaritons, quasiparticles arising from strong coupling between electromagnetic waves and optical phonons, have potential for applications in subdiffraction imaging, sensing, thermal conduction enhancement, and spectroscopy signal enhancement. A new class of phonon polaritons in low-symmetry monoclinic crystals, hyperbolic shear polaritons (HShPs), have been verified recently in ß-Ga2O3 by free electron laser (FEL) measurements. However, detailed behaviors of HShPs in ß-Ga2O3 nanostructures still remain unknown. Here, by using monochromatic electron energy loss spectroscopy in conjunction with scanning transmission electron microscopy, the experimental observation of multiple HShPs in ß-Ga2O3 in the mid-infrared (MIR) and far-infrared (FIR) ranges is reported. HShPs in various ß-Ga2O3 nanorods and a ß-Ga2O3 nanodisk are excited. The frequency-dependent rotation and shear effect of HShPs reflect on the distribution of EELS signals. The propagation and reflection of HShPs in nanostructures are clarified by simulations of electric field distribution. These findings suggest that, with its tunable broad spectral HShPs, ß-Ga2O3 is an excellent candidate for nanophotonic applications.

3.
Sci Bull (Beijing) ; 69(6): 823-832, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38218634

RESUMEN

Global warming during the Miocene Climate Optimum (MCO, ∼17-14 million years ago) is associated with massive carbon emissions sourced from the flood basalt volcanism and ocean crustal production. However, the perturbation of tectonic carbon degassing on the interaction between climate change and carbon cycle remains unclear. Here, through time-evolutive phase analysis of new and published high-resolution benthic foraminiferal oxygen (δ18O) and carbon (δ13C) isotope records from the global ocean, we find that variations in the marine carbon cycle lead the climate-cryosphere system (δ13C-lead-δ18O) on 405,000-year eccentricity timescales during the MCO. This is in contrast to the previously reported climate-lead-carbon (δ18O-lead-δ13C) scenario during most of the Oligo-Miocene (∼34-6 million years ago). Further sensitivity analysis and model simulations suggest that the elevated atmospheric CO2 concentrations and the resulting greenhouse effect strengthened the low-latitude hydrological cycle during the MCO, accelerating the response of marine carbon cycle to eccentricity forcing. Tropical climate processes played a more important role in regulating carbon-cycle variations when Earth's climate was in a warm regime, as opposed to the dominant influence of polar ice-sheet dynamics during the Plio-Pleistocene (after ∼6 million years ago).

4.
Phys Med ; 117: 103204, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38154373

RESUMEN

PURPOSE: The purpose of this study was to accurately predict or classify the beam GPR with an ensemble model by using machine learning for SBRT(VMAT) plans. METHODS: A total of 128 SBRT VMAT plans with 330 arc beams were retrospectively selected, and 216 radiomics and 34 plan complexity features were calculated for each arc beam. Three models for GPR prediction and classification using support vector machine algorithm were as follows: (1) plan complexity feature-based model (plan model); (2) radiomics feature-based model (radiomics model); and (3) an ensemble model combining the two models (ensemble model). The prediction performance was evaluated by calculating the mean absolute error (MAE), root mean square error (RMSE), and Spearman's correlation coefficient (SC), and the classification performance was measured by calculating the area under the receiver operating characteristic curve (AUC), accuracy, specificity, and sensitivity. RESULTS: The MAE, RMSE and SC at the 2 %/2 mm gamma criterion in the test dataset were 1.4 %, 2.57 %, and 0.563, respectively, for the plan model; 1.42 %, and 2.51 %, and 0.508, respectively, for the radiomics model; and 1.33 %, 2.49 %, and 0.611, respectively, for the ensemble model. The accuracy, specificity, sensitivity, and AUC at the 2 %/2 mm gamma criterion in the test dataset were 0.807, 0.824, 0.681, and 0.854, respectively, for the plan model; 0.860, 0.893, 0.624, and 0.877, respectively, for the radiomics model; and 0.852, 0.871, 0.710, and 0.896, respectively, for the ensemble model. CONCLUSIONS: The ensemble model can improve the prediction and classification performance for the GPR of SBRT (VMAT).


Asunto(s)
Radiocirugia , Radioterapia de Intensidad Modulada , Estudios Retrospectivos , Algoritmos , Aprendizaje Automático , Rayos gamma , Etopósido
5.
Med Sci Monit ; 29: e940686, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37828733

RESUMEN

BACKGROUND Bloodstream infections, which arise when pathogenic microorganisms infiltrate the bloodstream, present a grave health risk. Their potentially lethal nature combined with the ability to severely impair physiological functions underscore the importance of understanding and mitigating such infections. This study aimed to elucidate drug sensitivity profiles and distribution of these pathogens in hospitals in Ulanhot, Inner Mongolia. MATERIAL AND METHODS From 2017 to 2021, we gathered blood culture-positive samples from several hospitals across Ulanhot. Using combined diagnostic techniques, including the instrument method, paper diffusion, and Epsilometer test (E-test), we determined the identity of pathogens and assessed their drug sensitivity. Subsequent data processing with WHONET 5.6 software provided insights into the patterns of microbial distribution and extent of drug resistance. RESULTS Of 2498 pathogenic strains identified, 35.83% were gram-positive, 62.45% were gram-negative, and a smaller fraction of 1.72% were fungi. Escherichia coli and Klebsiella pneumoniae were the primary bacteria, contributing to 35.15% and 15.73% of infections, respectively. Alarmingly, methicillin-resistant strains exhibited pronounced resistance to drugs, notably penicillin G (resistance rates of 80.87% to 100.00%) and erythromycin (resistance rates of 91.16% to 97.28%). Acinetobacter baumannii had a particularly high resistance profile, surpassing Pseudomonas aeruginosa, which exhibited a resistance rate below 30.00%. CONCLUSIONS Ulanhot's primary bloodstream infection agents were gram-negative bacteria, specifically E. coli and K. pneumoniae. The growing drug resistance observed, particularly among strains like A. baumannii, highlights the pressing need for rigorous drug resistance surveillance and the strategic use of antibiotics, ensuring their efficacy is preserved for future medical needs.


Asunto(s)
Bacteriemia , Staphylococcus aureus Resistente a Meticilina , Sepsis , Humanos , Escherichia coli , Farmacorresistencia Bacteriana , Bacteriemia/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Sepsis/tratamiento farmacológico , Resistencia a Medicamentos , China/epidemiología
6.
Ultramicroscopy ; 253: 113818, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37544270

RESUMEN

Recent advances in scanning transmission electron microscopy have enabled atomic-scale focused, coherent, and monochromatic electron probes, achieving nanoscale spatial resolution, meV energy resolution, sufficient momentum resolution, and a wide energy detection range in electron energy-loss spectroscopy (EELS). A four-dimensional EELS (4D-EELS) dataset can be recorded with a slot aperture selecting the specific momentum direction in the diffraction plane and the beam scanning in two spatial dimensions. In this paper, the basic principle of the 4D-EELS technique and a few examples of its application are presented. In addition to parallelly acquired dispersion with energy down to a lattice vibration scale, it can map the real space variation of any EELS spectrum features with a specific momentum transfer and energy loss to study various locally inhomogeneous scattering processes. Furthermore, simple mathematical combinations associating the spectra at different momenta are feasible from the 4D dataset, e.g., the efficient acquisition of a reliable electron magnetic circular dichroism (EMCD) signal is demonstrated. This 4D-EELS technique provides new opportunities to probe the local dispersion and related physical properties at the nanoscale.

7.
Materials (Basel) ; 16(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37444926

RESUMEN

Tungsten (W), as a promising plasma-facing material for fusion nuclear reactors, exhibits ductility reduction. Introducing high-density coherent nano-dispersoids into the W matrix is a highly efficient strategy to break the tradeoff of the strength-ductility performance. In this work, we performed helium (He) ion irradiation on coherent oxide-dispersoids strengthened (ODS) W to investigate the effect of coherent nanoparticle interfaces on the behavior of He bubbles. The results show that the diameter and density of He bubbles in ODS W are close to that in W at low dose of He ion irradiation. The radiation-induced hardening increment of ODS W, being 25% lower than that of pure W, suggests the involvement of the coherent interface in weakening He ion irradiation-induced hardening and emphasizes the potential of coherent nano-dispersoids in enhancing the radiation resistance of W-based materials.

8.
J Appl Clin Med Phys ; 24(10): e14050, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37248800

RESUMEN

To investigate the difference of the fluence map optimization (FMO) and Stochastic platform optimization (SPO) algorithm in a newly-introduced treatment planning system (TPS). METHODS: 34 cervical cancer patients with definitive radiation were retrospectively analyzed. Each patient has four plans: FMO with fixed jaw plans (FMO-FJ) and no fixed jaw plans (FMO-NFJ); SPO with fixed jaw plans (SPO-FJ) and no fixed jaw plans (SPO-NFJ). Dosimetric parameters, Modulation Complexity Score (MCS), Gamma Pass Rate (GPR) and delivery time were analyzed among the four plans. RESULTS: For target coverage, SPO-FJ plans are the best ones (P ≤ 0.00). FMO plans are better than SPO-NFJ plans (P ≤ 0.00). For OARs sparing, SPO-FJ plans are better than FMO plans for mostly OARs (P ≤ 0.04). Additionally, SPO-FJ plans are better than SPO-NFJ plans (P ≤ 0.02), except for rectum V45Gy. Compared to SPO-NFJ plans, the FMO plans delivered less dose to bladder, rectum, colon V40Gy and pelvic bone V40Gy (P ≤ 0.04). Meanwhile, the SPO-NFJ plans showed superiority in MU, delivery time, MCS and GPR in all plans. In terms of delivery time and MCS, the SPO-FJ plans are better than FMO plans. FMO-FJ plans are better than FMO-NFJ plans in delivery efficiency. MCSs are strongly correlated with PCTV length, which are negatively with PCTV length (P ≤ 0.03). The delivery time and MUs of the four plans are strongly correlated (P ≤ 0.02). Comparing plans with fixed or no fixed jaw in two algorithms, no difference was found in FMO plans in target coverage and minor difference in Kidney_L Dmean, Mu and delivery time between PCTV width≤15.5 cm group and >15.5 cm group. For SPO plans, SPO-FJ plans showed more superiority in target coverage and OARs sparing than the SPO-NFJ plans in the two groups. CONCLUSIONS: SPO-FJ plans showed superiority in target coverage and OARs sparing, as well as higher delivery efficiency in the four plans.


Asunto(s)
Radioterapia de Intensidad Modulada , Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/radioterapia , Estudios Retrospectivos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Órganos en Riesgo
9.
Nat Commun ; 14(1): 806, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36781880

RESUMEN

Oxygen solute strengthening is an effective strategy to harden alloys, yet, it often deteriorates the ductility. Ordered oxygen complexes (OOCs), a state between random interstitials and oxides, can simultaneously enhance strength and ductility in high-entropy alloys. However, whether this particular strengthening mechanism holds in other alloys and how these OOCs are tailored remain unclear. Herein, we demonstrate that OOCs can be obtained in bcc (body-centered-cubic) Ti-Zr-Nb medium-entropy alloys via adjusting the content of Nb and oxygen. Decreasing the phase stability enhances the degree of (Ti, Zr)-rich chemical short-range orderings, and then favors formation of OOCs after doping oxygen. Moreover, the number density of OOCs increases with oxygen contents in a given alloy, but adding excessive oxygen (>3.0 at.%) causes grain boundary segregation. Consequently, the tensile yield strength is enhanced by ~75% and ductility is substantially improved by ~164% with addition of 3.0 at.% O in the Ti-30Zr-14Nb MEA.

10.
Nat Mater ; 22(4): 442-449, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35637339

RESUMEN

Materials capable of sustaining high radiation doses at a high temperature are required for next-generation fission and future fusion energy. To date, however, even the most promising structural materials cannot withstand the demanded radiation environment due to irreversible radiation-driven microstructure degradation. Here we report a counterintuitive strategy to achieve exceptionally high radiation tolerance at high temperatures by enabling reversible local disordering-ordering transition of the introduced superlattice nanoprecipitates in metallic materials. As particularly demonstrated in martensitic steel containing a high density of B2-ordered superlattices, no void swelling was detected even after ultrahigh-dose radiation damage at 400-600 °C. The reordering process of the low-misfit superlattices in highly supersaturated matrices occurs through the short-range reshuffling of radiation-induced point defects and excess solutes right after rapid, ballistic disordering. This dynamic process stabilizes the microstructure, continuously promotes in situ defect recombination and efficiently prevents the capillary-driven long-range diffusion process. The strategy can be readily applied into other materials and pave the pathway for developing materials with high radiation tolerance.

11.
Nat Commun ; 13(1): 4894, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35985996

RESUMEN

Ion-selective nanoporous two-dimensional (2D) materials have shown extraordinary potential in energy conversion, ion separation, and nanofluidic devices; however, different applications require diverse nanochannel devices with different ion selectivity, which is limited by sample preparation and experimental techniques. Herein, we develop a heterogeneous graphene-based polyethylene terephthalate nanochannel (GPETNC) with controllable ion sieving to overcome those difficulties. Simply by adjusting the applied voltage, ion selectivity among K+, Na+, Li+, Ca2+, and Mg2+ of the GPETNC can be immediately tuned. At negative voltages, the GPETNC serves as a mono/divalent ion selective device by impeding most divalent cations to transport through; at positive voltages, it mimics a biological K+ nanochannel, which conducts K+ much more rapidly than the other ions with K+/ions selectivity up to about 4.6. Besides, the GPETNC also exhibits the promise as a cation-responsive nanofluidic diode with the ability to rectify ion currents. Theoretical calculations indicate that the voltage-dependent ion enrichment/depletion inside the GPETNC affects the effective surface charge density of the utilized graphene subnanopores and thus leads to the electrically controllable ion sieving. This work provides ways to develop heterogeneous nanochannels with tunable ion selectivity toward broad applications.

12.
Nano Lett ; 22(15): 6207-6214, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35905393

RESUMEN

Light-matter interactions are commonly probed by optical spectroscopy, which, however, has some fundamental limitations such as diffraction-limited spatial resolution, tiny momentum transfer, and noncontinuous excitation/detection. In this work, through the use of scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS) with ultrawide energy and momentum match and subnanometer spatial resolution, the longitudinal Fabry-Perot (FP) resonating modes and the transverse whispering-gallery modes (WGMs) in individual SiC nanowires are simultaneously excited and detected, which span from near-infrared (∼1.2 µm) to ultraviolet (∼0.2 µm) spectral regime, and the momentum transfer can range up to 108 cm-1. The size effects on the resonant spectra of nanowires are also revealed. This work provides an alternative technique to optical resonating spectroscopy and light-matter interactions in dielectric nanostructures, which is promising for modulating free electrons via photonic structures.

13.
Adv Mater ; 34(33): e2201120, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35470492

RESUMEN

2D metal carbides and nitrides (MXene) are promising candidates for electromagnetic (EM) shielding, saturable absorption, thermal therapy, and photocatalysis owing to their excellent EM absorption. The plasmon resonances in metallic MXene micro/nanostructures may play an important role in enhancing the EM absorption; however, their contribution has not been determined due to the lack of a precise understanding of its plasmon behavior. Here, the use of high-spatial-resolution electron energy-loss spectroscopy to measure the plasmon dispersion of MXene films with different thicknesses is reported, enabling accurate analysis of the EM absorption of complex MXene structures in a wide frequency range via a theoretical model. The EM absorption of MXene can be excited at the desired frequency by controlling the momentum (e.g., the sizes of the nanoflakes for EM excitation) as the strength can be enhanced by increasing the layer number and the interlayer distance in MXene. For example, a 3 nm interlayer distance can nearly double the plasmon-enhanced EM absorption in MXene nanostructures. These findings can guide the design of advanced ultrathin EM absorption materials for a broad range of applications.

14.
Biochem Genet ; 60(5): 1793-1808, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35098408

RESUMEN

Sepsis is mainly caused by infection, and inflammation plays a vital role in the progression of sepsis. Increasing evidence shows the regulatory mechanism of long non-coding RNA growth arrest-specific 5 (GAS5) in inflammatory response. However, the potential role of GAS5 in sepsis was not really clear. Here, we set to investigate the role and mechanism of GAS5 in the inflammatory response of lipopolysaccharide (LPS)-induced macrophages in vitro. Levels of GAS5, microRNA-520-3p, suppressor of cytokine signaling 3 (SOCS3) and inflammatory cytokines tumor necrosis factor-α (TNF-α), and interleukin (IL)-6 and IL-1ß were determined by quantitative real-time polymerase chain reaction (qRT-PCR). Nitric oxide (NO) release was measured through flow cytometry. The levels of TNF-α, IL-6, and IL-1ß were also detected using ELISA. Dual-luciferase reporter and RNA pull-down assays were performed to clarify the relationship between miR-520-3p and GAS5 or SOCS3. Western blot was carried out to assess SOCS3 protein expression in macrophages. GAS5 level was remarkably decreased in sepsis serum and it was inversely related to the severity of sepsis. Upregulation of GAS5 repressed inflammatory response in LPS-induced macrophages, and the inhibitory effect was returned by miR-520-3p mimics. Moreover, miR-520-3p inhibitor downregulated the levels of inflammatory factors of TNF-α, IL-6, and IL-1ß, as well as suppressed NO release. Mechanically, GAS5 functioned as a sponge of miR-520-3p and miR-520-3p directly targeted SOCS3. GAS5 regulated inflammatory response by the miR-520-3p/SOCS3 axis in LPS-induced macrophages, which furnished a novel therapeutic idea in clinical treatment of inflammation-induced sepsis.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Sepsis , Humanos , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/metabolismo , Interleucina-6 , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Sepsis/inducido químicamente , Sepsis/genética , Sepsis/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Factor de Necrosis Tumoral alfa/genética
15.
Nature ; 599(7885): 399-403, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34789901

RESUMEN

The breakdown of translational symmetry at heterointerfaces leads to the emergence of new phonon modes localized at the interface1. These modes have an essential role in thermal and electrical transport properties in devices, especially in miniature ones wherein the interface may dominate the entire response of the device2. Although related theoretical work began decades ago1,3-5, experimental research is totally absent owing to challenges in achieving the combined spatial, momentum and spectral resolutions required to probe localized modes. Here, using the four-dimensional electron energy-loss spectroscopy technique, we directly measure both the local vibrational spectra and the interface phonon dispersion relation for an epitaxial cubic boron nitride/diamond heterointerface. In addition to bulk phonon modes, we observe modes localized at the interface and modes isolated from the interface. These features appear only within approximately one nanometre around the interface. The localized modes observed here are predicted to substantially affect the interface thermal conductance and electron mobility. Our findings provide insights into lattice dynamics at heterointerfaces, and the demonstrated experimental technique should be useful in thermal management, electrical engineering and topological phononics.

16.
Sci Total Environ ; 801: 149784, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34428654

RESUMEN

Metal contamination has become an increasingly severe environmental issue due to intense anthropogenic activities in recent decades. Many studies have reported a rapidly increasing trend of heavy metal contents in sedimentary records. In this study, two lacustrine sediment cores (LDL and YL) far away from scientific research stations were collected in Ny-Ålesund and analyzed for the vertical distributions of 17 elemental concentrations (Cu, Zn, Pb, Co, Ni, Cr, Sr, Ba, Mn, P, Ti, K2O, Na2O, CaO, MgO, Fe2O3, Al2O3), CIA and TOC contents. The results indicated that only the proxies Pb, P, CaO, TOC, and CIA showed an increasing trend in the upper 7 cm section of the sediment cores, while most of the elements' concentrations decreased towards the surface. The rapid increase of TOC contents is likely related to the climate warming over the past 200 years, which promotes the prosperity of vegetation and thus leads to more input of organic matter into the lakes. Moreover, a large number of seabirds live around the sampling position and the seabird guano contains high concentrations of P, which could be regarded as an important nutrient source for vegetation. Additionally, the rapid climate warming could accelerate the chemical weathering rates, and thus lead to increased CaO contents in the sediment profiles according to its geological background. Therefore, the concentrations of other elements are very likely diluted by the high contents of organic matter and CaO in the upper part of the sediment cores. It is noteworthy that the rapidly increasing trend of Pb contents are related to the gas-oil powered generators in Ny-Ålesund and long-range atmospheric transport from Europe. This study highlighted the nonnegligible influence of climate warming on the inorganic elemental geochemistry distributions in remote lakes.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Regiones Árticas , Cambio Climático , Monitoreo del Ambiente , Sedimentos Geológicos , Metales Pesados/análisis , Svalbard , Contaminantes Químicos del Agua/análisis
17.
Open Med (Wars) ; 16(1): 919-930, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34222667

RESUMEN

BACKGROUND: Cerebral ischemia and reperfusion injury (CIRI) affects bodily function by causing irreversible damage to brain cells. The diverse pathophysiological course factors hinder the research work to go deeper. Long noncoding RNA taurine-upregulated gene 1 (TUG1) has been reported to be related to CIRI. This study explored the undefined regulatory pathway of TUG1 in CIRI. METHODS: Quantitative real-time polymerase chain reaction was applied to test the expression of TUG1, microRNA (miR)-493-3p and miR-410-3p. The viability and apoptosis of oxygen and glucose deprivation/reoxygen (OGD/R) model cells were evaluated by cell counting kit-8 and flow cytometry assay, respectively. The determination of inflammatory factors of interleukin-6, interleukin-1ß and tumor necrosis factor-α was presented by enzyme-linked immunosorbent assay. The oxidative stress was performed by measuring the generation of malondialdehyde, reactive oxygen species and the activity of superoxide dismutase. Cytotoxicity was presented by measuring the generation of lactate dehydrogenase. Western blot assay was devoted to assessing the level of apoptosis-related factors (cleaved-caspase-3 and cleaved-caspase-9) and the protein level of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) pathway-related factors in neuro-2a cells treated by OGD/R. Besides, online database starBase was applied to predict the potential binding sites of TUG1 to miR-493-3p and miR-410-3p, which was further confirmed by the dual-luciferase reporter system. RESULTS: The expression of TUG1 was upregulated, while miR-493-3p or miR-410-3p was downregulated in the serum of CIRI and OGD/R model cells. Meanwhile, knockdown of TUG1 eliminated the suppression in proliferation, the promotion in apoptosis, inflammation and oxidative stress, as well as the cytotoxicity in OGD/R model cells. Interestingly, the inhibition of miR-493-3p or miR-410-3p allayed the above effects. In addition, TUG1 harbored miR-493-3p or miR-410-3p and negatively regulated their expression. Finally, the TUG1 activated JNK and p38 MAPK pathways by sponging miR-493-3p/miR-410-3p. CONCLUSION: TUG1 motivated the development of CIRI by sponging miR-493-3p/miR-410-3p to activate JNK and p38 pathways. The novel role of TUG1 in CIRI may contribute to the advancement of CIRI treatment.

18.
Artículo en Inglés | MEDLINE | ID: mdl-34133124

RESUMEN

Membranes are key components in chemical purification, biological separation, and water desalination. Traditional polymeric membranes are subjected to a ubiquitous trade-off between permeance and selectivity, which significantly hinders the separation performance. Nanoporous atomically thin membranes (NATMs), such as graphene NATMs, have the potential to break this trade-off. Owing to their uniqueness of two-dimensional structure and potential nanopore structure controllability, NATMs are expected to have outstanding selectivity through molecular sieving while achieving ultimate permeance at the same time. However, a drastic selectivity discrepancy exists between the proof-of-concept demonstrations and scalable separation applications in graphene membranes. In this paper, we offer a possible solution to narrow this discrepancy by tuning the pore density and pore size separately with two successive plasma treatments. We demonstrate that by narrowing the pore size distribution, the selectivity of graphene membranes can be greatly increased. Low-energy argon plasma is first applied to nucleate high density of defects in graphene. Controlled oxygen plasma is then utilized to selectively enlarge the defects into nanopores with desired sizes. This method is scalable, and the fabricated 1 cm2 graphene NATMs with sub-nanometer pores can separate KCl and Allura Red with a selectivity of 104 and a permeance of 1.1 × 10-6 m s-1. The pores in NATMs can be further tuned from gas-selective sub-nanometer pores to a few nanometer size. The fabricated NATMs show a selectivity of 35 between CO2 and N2. With longer enlargement time, a selectivity of 21.2 between a lysozyme and bovine serum albumin can also be achieved with roughly four times higher permeance than that of a commercial dialysis membrane. This research offers a solution to realize NATMs of tunable pore size with a narrow pore size distribution for different separation processes from sub-nanometer in gas separation or desalination to a few nanometers in dialysis.

19.
Zhongguo Zhen Jiu ; 41(6): 603-7, 2021 Jun 12.
Artículo en Chino | MEDLINE | ID: mdl-34085475

RESUMEN

OBJECTIVE: To observe the analgesic effect of auricular point sticking therapy during the perioperative stage in the patients with partial lung resection. METHODS: A total of 92 patients with partial lung resection were randomized into an auricular point group (31 cases, 1 case dropped off), the sham-auricular point group (30 cases) and a medication group (31 cases, 1 case dropped off). The routine medication for analgesia was provided in all of the three groups. In the auricular point group, 1 day before operation, the auricular point sticking therapy was applied at shenmen (TF4), sympathetic (AH6a), subcortex (AT4), brain stem (AT3,4i), anterior ear lobe (LO4), chest (AH10) and lung (CO14), retained till the third day after operation. In the sham-auricular point group, the auricular adhesive tape without semen vaccariae was used at the same points as the auricular point group. Separately, the scores of visual analogue scale (VAS) in 8, 16, 24, 48 h and 72 h after operation, the time for obtaining the mean of the postoperative VAS score<3 points, the scores of hospital anxiety and depression scale (HAD) in 8, 72 h after operation and the plasma concentration of ß-endorphin in 24, 48 h after operation, as well as the adverse reactions after operation were recorded in the patients of each group. RESULTS: In 8, 16, 24, 48 h and 72 h after operation, VAS scores in the auricular point group were lower than those in the sham-auricular point group and the medication group separately (P<0.05). In the auricular point group, 16 h after operation the mean of VAS score was less than 3 points, but in the sham-auricular point group and the medication group, 48 h after operation, such a mean score of VAS was obtained. In 8, 72 h after operation, HAD score in the auricular point group was lower than that in the sham-auricular point group and the medication group respectively. In 24, 48 h after operation, the concentration of plasmaß-endorphin was all higher than that in the sham-auricular point group and the medication group respectively (P<0.05). In 24 h after operation, the plasma concentration ofß-endorphin in the sham-auricular point group was higher than the medication group (P<0.05). The incidence of adverse reaction in the auricular point group was lower than that in the sham-auricular point group and the medication group respectively (P<0.05). CONCLUSION: Auricular point sticking therapy relieves perioperative pain, shortens analgesic time, releases anxious and depressive emotions and reduces postoperative adverse reaction in the patients with partial lung resection. The analgesic mechanism is probably related to the increase of plasma concentration of ß-endorphin.


Asunto(s)
Acupuntura Auricular , Puntos de Acupuntura , Humanos , Pulmón , Dolor , Manejo del Dolor
20.
Int Urol Nephrol ; 53(11): 2409-2419, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34089461

RESUMEN

BACKGROUND: Long noncoding RNA PVT1 is associated with diverse human diseases, including acute kidney injury (AKI). However, our understandings of PVT1 on septic AKI are limited. METHODS: The septic AKI model was constructed through lipopolysaccharide (LPS) treatment. PVT1 and miR-17-5p levels were measured using qRT-PCR analysis. The concentrations of inflammatory cytokines were determined with ELISA kits. Cell viability and apoptosis were assessed using CCK-8 assay and flow-cytometric analysis, respectively. Protein levels were examined using western blot assay. The targeting association between miR-17-5p and PVT1 was verified by dual-luciferase reporter, RIP and RNA pull-down assays. RESULTS: PVT1 level was elevated and miR-17-5p level was declined in septic AKI patients' serum and LPS-stimulated HK-2 cells. Cell viability was suppressed and cell apoptosis and inflammation were promoted after LPS treatment. PVT1 knockdown or miR-17-5p elevation restored LPS-mediated HK-2 cell injury. MiR-17-5p was sponged by PVT1, and its inhibition weakened the impact of PVT1 deficiency on LPS-mediated injury of HK-2 cells. In addition, PVT1 knockdown inactivated NF-κB pathway mediated by LPS treatment, but miR-17-5p inhibition further reversed this effect. CONCLUSION: PVT1 knockdown promoted cell viability, suppressed inflammatory response and apoptosis by regulating miR-17-5p expression and NF-κB pathway in LPS-stimulated HK-2 cells.


Asunto(s)
Lesión Renal Aguda/etiología , MicroARNs/fisiología , FN-kappa B/fisiología , ARN Largo no Codificante/fisiología , Sepsis/etiología , Transducción de Señal/fisiología , Células Cultivadas , Humanos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...